👈 فروشگاه فایل 👉

دانلود ترجمه مقاله یادگیری مشخصه ­ی عابر پیاده براساس CNN چند برچسبی برای بیومتریک نرم

ارتباط با ما

... دانلود ...

IEEE-ICB 2015

Multi-label CNN Based Pedestrian Attribute Learning for Soft Biometrics

Abstract

Recently pedestrian attributes like gender age and

clothing etc. have been used as soft biometric traits for recognizing

people. Unlike existing methods that assume the

independence of attributes during their prediction we propose

a multi-label convolutional neural network (MLCNN)

to predict multiple attributes together in a unified framework.

Firstly a pedestrian image is roughly divided into

multiple overlapping body parts which are simultaneously

integrated in the multi-label convolutional neural network.

Secondly these parts are filtered independently and aggregated

in the cost layer. The cost function is a combination

of multiple binary attributeclassification cost functions.

Moreover we propose an attribute assisted person reidentification

method which fuses attribute distances and

low-level feature distances between pairs of person images

to improve person re-identification performance. Extensive

experiments show: 1) the average attributeclassification

accuracy of the proposed method is 5.2% and 9.3% higher

than the SVM-based method on three public databases

VIPeR and GRID respectively; 2) the proposed attribute assisted

person re-identification method is superior to existing

approaches.

یادگیری مشخصه ­ی عابر پیاده براساس CNN چند برچسبی برای بیومتریک نرم

چکیده

به تازگی، ویژگی­های عابر پیاده مثل جنس، سن و لباس و غیره، به­عنوان صفات بیومتریک نرم برای شناختن افراد استفاده شده­اند. برخلاف روش­های موجود که استقلال ویژگی­ها را در طول پیش­بینی آ­ن­ها در نظر می­گیرد، یک شبکه­ی عصبی پیچیده چند برچسبی (MLCNN) را به منظور پیش­بینی مشخصات متعدد همراه با هم در چارچوب یکپارچه ارائه می­کنیم. ابتدا،تصویر عابر پیاده تقریبا به چند بخش­ همپوشانی­کننده­ی بدن تقسیم می­شود، که بطور همزمان در شبکه عصبی پیچیده­ی چند برچسبی ادغام می­­شوند. در مرحله­ی دوم، این بخش­­ها بطور مستقل در لایه­ی هزینه فیلتر و طبقه­بندی می­شوند. تابع هزینه ترکیبی از چند تابع هزینه­ی طبقه­بندی ویژگی دودویی است. علاوه بر این، روش باز شناسایی شخص به کمک ویژگی را ارائه می­کنیم، که فواصل ویژگی و فواصل ویژگی سطح پایین را بین جفت تصاویر فرد به منظور بهبود عملکرد بازشناسایی فرد ترکیب می­کند. آزمایش­های گسترده نشان می­دهند: 1) میانگین دقت طبقه­بندی ویژگی روش ارائه شده به ترتیب 5.2% و 9.3% بیشتر از روش مبتنی بر SVM در سه پایگاه داده عمومی، VIPeR و GRID است، 2) روش پیشنهادی بازشناسایی فرد به کمک ویژگی نسبت به روش­های دیگر برتری دارد.

یادگیری مشخصه­ی عابر پیاده براساس CNN چند برچسبی برای بیومتریک نرم

چکیده

به تازگی، ویژگی­های عابر پیاده مثل جنس، سن و لباس و غیره، به­عنوان صفات بیومتریک نرم برای شناختن افراد استفاده شده­اند. برخلاف روش­های موجود که استقلال ویژگی­ها را در طول پیش­بینی آ­ن­ها در نظر می­گیرد، یک شبکه­ی عصبی پیچیده چند برچسبی (MLCNN) را به منظور پیش­بینی مشخصات متعدد همراه با هم در چارچوب یکپارچه ارائه می­کنیم. ابتدا،تصویر عابر پیاده تقریبا به چند بخش­ همپوشانی­کننده­ی بدن تقسیم می­شود، که بطور همزمان در شبکه عصبی پیچیده­ی چند برچسبی ادغام می­­شوند. در مرحله­ی دوم، این بخش­­ها بطور مستقل در لایه­ی هزینه فیلتر و طبقه­بندی می­شوند. تابع هزینه ترکیبی از چند تابع هزینه­ی طبقه­بندی ویژگی دودویی است. علاوه بر این، روش باز شناسایی شخص به کمک ویژگی را ارائه می­کنیم، که فواصل ویژگی و فواصل ویژگی سطح پایین را بین جفت تصاویر فرد به منظور بهبود عملکرد بازشناسایی فرد ترکیب می­کند. آزمایش­های گسترده نشان می­دهند: 1) میانگین دقت طبقه­بندی ویژگی روش ارائه شده به ترتیب 5.2% و 9.3% بیشتر از روش مبتنی بر SVM در سه پایگاه داده عمومی، VIPeR و GRID است، 2) روش پیشنهادی بازشناسایی فرد به کمک ویژگی نسبت به روش­های دیگر برتری دارد.

👇محصولات تصادفی👇

اثرات لایه بندی به وسیله رسوبات چسبنده و غیر چسبنده شیپ فایل محدوده سیاسی شهرستان طارم پروژه پایانی گاز از كك و زغال سنگ مبانی نظری و پیشینه پژوهش روانشناسی درباره هوش معنوی ( فصل دوم پایان نامه) طرح توجیهی باغ پسته 100 هکتاری